[수열]

[1] 등차 수열

1. 등차 수열 : 일정한 수(공차)를 더하여 얻어진 수열

2. 등차수열의 일반항

$$a_n = a + (n-1)d$$
 (첫째항 a , 공차 d)

- 3. 등차중항 : $b = \frac{a+c}{2}$ \leftarrow 산술평균
- 4. 등차수열의 합(S_n)

① 첫째항(
$$a$$
) 와 공차(d)를 알 때 \Rightarrow $S_n = \frac{n\{2a + (n-1)d\}}{2}$

② 첫째항(
$$a$$
) 와 끝항(1)을 알 때 \Rightarrow $S_n = \frac{n(a+1)}{2}$

5. 요령

① 3 개의 수가 등차수열을 이루고 있을 때
$$: a-d, a, a+d$$

② 4 개의 수가 등차수열을 이루고 있을 때 :
$$a-3d$$
, $a-d$, $a+d$, $a+3d$

③ 5 개의 수가 등차수열을 이루고 있을 때 :
$$a-2d$$
, $a-d$, $a+d$, $a+2d$

6. 합과 일반항의 관계

$$a_1 = S_1$$
, $a_n = S_n - S_{n-1}$ $d = a_n - a_{n-1}$

7. 조화 수열: 역수들이 등차수열을 이룰 때

-. 조화중항 : 수열
$$a$$
, b , c 가 이 순서로 조화수열 $-->$ $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 가 등차수열을 이룸

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \qquad \qquad \therefore \quad b = \frac{2ac}{a+c}$$

[2] 등비수열과 원리합계

1. 등비 수열 : 일정한 수(공비)를 곱하여 얻어지는 수열

2. 등비수열의 일반항

- **3. 등비중항 :** *b*=±√*ab* ← 기하평균
- 4. 등비수열의 합(S_n)

①
$$r \neq 1$$
 \Rightarrow $S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}$
② $r = 1$ \Rightarrow $S_n = na$

5. 등차, 등비, 조화중항의 대소

두 양수 a , b 에 대하여 등차중항을 A, 등비중항을 G, 조화중항을 H 라 하면,

$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$, $H = \frac{2ab}{a+b}$

- $\bigcirc G^2 = AH$
- ② $A \ge G \ge H$ (등호는 a = b 일 때 성립)

6. 원리합계

例) 연이율 r, 매년마다 복리로 매 년초에 a 원씩 적립하면 n 년말의 적립총액은 ?

$$S = a(1+r) + a (1+r)^2 + a (1+r)^3 + \dots + a (1+r)^n$$
 \Rightarrow 공비 : $1+r$, 첫째항 : $a(1+r)$ 인 등비수열의 합
$$\Rightarrow S = \frac{a(1+r)\{(1+r)^n - 1\}}{(1+r)-1} = \frac{a(1+r)\{(1+r)^n - 1\}}{r}$$

[3] 여러 가지 수열

1. **합의 기호** Σ : 수열의 합을 간단히 나타내는 기호

좌변의 끝항의 번호
$$\uparrow$$
 $a_1+a_2+a_3+\cdots+a_n=\sum_{k=1}^n a_k \to$ 좌변의 k 항 (일반항)
$$\downarrow$$
 좌변이 첫째항의 번호

2. \sum 의 기본성질 : ① $\sum_{k=1}^{n} (a_k^{\pm} b_k^{}) = \sum_{k=1}^{n} a_k^{\pm} \sum_{k=1}^{n} b_k^{}$ (복부호동순)

②
$$\sum_{k=1}^{n} c \cdot a_k = c \sum_{k=1}^{n} a_k$$
 (c는 상수)

③
$$\sum_{k=1}^{n} c = c \cdot n$$
 (c는 상수)

3. 자연수의 거듭제곱의 합:

①
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

②
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

4. 계차수열 : 수열 { a_n } 에 대하여 $b_n = a_{n+1} - a_n$ ($n=1, 2, \cdots$)을 **계차**라 하고, 수열 { b_n } 을 **계차수열** 이라고 한다.

$$\{ a_n \} : a_1, a_2, a_3, a_4, \cdots, a_n, a_{n+1}$$
 : $\{ b_n \} : b_1, b_2, b_3, \cdots , b_n \}$

$$a_n = a_1 + \sum_{k=1}^{n-1} b_k$$
 $(n \ge 2)$

5. 군수열 : 어떤 규칙에 의해 몇 개의 군으로 나누어 생각한 수열

例
$$1, \frac{1}{2}, \frac{2}{2}, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{1}{4}, \cdots$$

6. 멱급수 : 등차수열과 등비수열의 곱으로 이루어진 수열의 합

$$S_{n} = 1 + 2r + 3 \quad r^{2} + 4 \quad r^{3} + \dots + n \quad r^{n-1} \qquad (r \neq 1)$$

$$- \underbrace{) \quad r \quad S_{n} = \quad r + 2 \quad r^{2} + 3 \quad r^{3} + 4 \quad r^{3} + \dots + n \quad r^{n}}_{S_{n} - r \quad S_{n} = (1 + r + r^{2} + \dots + r^{n-1}) - n \quad r^{n}}$$

$$\therefore \quad S_{n} = \frac{1 - r^{n}}{(1 - r)^{2}} - \frac{n \quad r^{n}}{1 - r}$$

7. 부분분수의 합:

$$\frac{1}{A \cdot B} = \frac{1}{B - A} \left(\frac{1}{A} - \frac{1}{B} \right) \quad \text{OIB}$$

(b)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = (\frac{1}{1} - \frac{1}{n+1})$$

[4] 점화식과 수학적 귀납법

- **1. 수학적 귀납법** : 명제 P(n) 이 다음 두 조건을 만족시킬 때
 - i) n=1 일 때, P(n) 이 성립한다.
 - ii) n=k일 때. P(n) 이 성립한다고 가정하면
 - iii) n = k+1 일 때도 P(n) 이 성립한다

그러면, 명제 P(n) 은 모든 자연수에 대해서도 성립한다.

2. 수열의 귀납적 정의 (점화식)

- ☑ 유형별 정리
 - ① $a_{n+1} a_n = d$ (일정) \Rightarrow 공차가 d 인 등차수열
 - ② $a_{n+1} \div a_n = r$ (일정) \Rightarrow 공비가 r 인 등비수열
 - ③ $2 a_{n+1} = a_n + a_{n+2}$ \Rightarrow $a_{n+2} a_{n+1} = a_{n+1} a_n$ \Rightarrow 등차수열
 - ④ $a_{n+1}^2 = a_n \cdot a_{n+2}$ \Rightarrow $a_{n+2} \div a_{n+1} = a_{n+1} \div a_n$ \Rightarrow 등비수열
 - ⑤ $\frac{2}{a_{n+1}} = \frac{1}{a_n} + \frac{1}{a_{n+2}}$ $\Rightarrow \frac{1}{a_{n+2}} \frac{1}{a_{n+1}} = \frac{1}{a_{n+1}} \frac{1}{a_n}$ \Rightarrow 조화수열 例) $a_1 = 1$, $3 a_n \cdot a_{n+1} = a_{n+1} a_n$ 일 때, $a_n \in ?$
 - ⑥ $a_{n+1} = a_n + f(n)$ 의 꼴 \Rightarrow n 에 1, 2, 3, …, n-1 을 대입하여 얻은 식을 변변 더한다.

$$\Rightarrow a_n = a_1 + \sum_{k=1}^{n-1} f(k)$$
 $(n \ge 2)$

例) $a_1 = 1$, $a_{n+1} = a_n + n$ 일 때, a_{10} 은 ?

①
$$a_{n+1} = f(n) \cdot a_n$$
 의 꼴 \Rightarrow n 에 1, 2, 3, …, n -1 을 대입하여 얻은 식을 변변 곱한다.
$$\Rightarrow a_n = a_1 \cdot f(1) \cdot f(2) \cdot f(3) \cdots f(n-1)$$

例)
$$a_1 = 3$$
, $a_{n+1} = 3^{n+1} \cdot a_n$ 일 때, $a_n \in ?$

⑧
$$a_{n+1}=p \ a_n+q$$
 의 꼴 (단, p, q, α 는 상수)
$$\Rightarrow a_{n+1}-\alpha=p(\ a_{n+}-\alpha)$$
 의 꼴로 변형 例) $a_1=1, \quad a_{n+1}=2 \ a_n+1$ 일 때, a_n 은 ?

⑨
$$p \, a_{\,n+2} + q \, a_{\,n+1} + r \, a_{\,n} = 0$$
 의 꼴 (단, $p + q + r = 0$, p , q , r , k 는 상수)
$$\Rightarrow \quad a_{\,n+2} - a_{\,n+1} = k (\ a_{\,n+1} - a_{\,n} \) \$$
의 꼴로 변형 例) $a_{\,1} = 1$, $a_{\,2} = 3$, $a_{\,n+2} - 3 \, a_{\,n+1} + 2 \, a_{\,n} = 0 \, (n = 1, \ 2, \ 3, \ \cdots)$ 일 때, $a_{\,n}$ 은 ?

$$\textcircled{10} \quad a_{n+1} = \frac{r a_n}{p a_n + q}$$
 의 꼴 \Rightarrow 양변에 역수를 취한다.

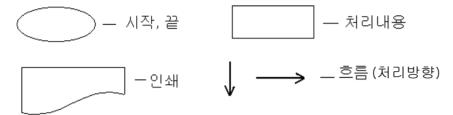
①
$$a_{n+1} = p a_n + f(n)$$
 의 꼴 \Rightarrow 양변을 p^{n+1} 으로 나눈다.

[5] 알고리즘과 순서도

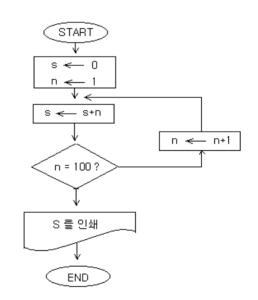
1. 개념 :

알고리즘(Algorithm) : 단계적으로 일을 처리하는 순서. **순서도(**Flow Chart) : 기호를 써서 그림으로 나타낸 것.

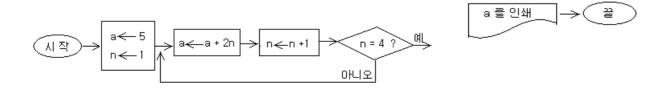
2. 사용되는 기호 :



예1) 다음 값을 구하는 순서도를 작성하여라.



예2) 수열 { a_n } 에서 $a_1 = 5$, $a_{n+1} = a_n + 2n$ $(n \ge 1)$ 일 때, a_4 를 구하는 순서도.



수열 문제

- **1**) 첫째항이 6 , 제 4 항이 $\frac{3}{2}$ 인 조화수열의 제 n항은 ?
- ${f 2}$) 등차수열 { a_n } 에서 $a_5+a_{15}=10$ 일 때, $a_3+a_7+a_{10}+a_{13}+a_{17}$ 의 값은?
- ${f 3}$) 네 수 a,x,b,2x 가 이 순서대로 등차수열을 이룰 때, $\frac{a}{b}$ 의 값은? $(x \ne 0)$

 - ① $\frac{1}{4}$ ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$ ⑤ 2

- 4) 어떤 등차수열에서 처음부터 10항 까지의 합이 145, 그 다음의 10항 까지의 합이 445이다. 이 때, 그 다음의 10항 까지의 합을 구하여라.
- $\mathbf{5}$) 첫째항부터 제 n항 까지의 합을 S_n 이라 할 때, $\log_{10}(S_n+1)=n$ 이 되는 수열의 일반항 a_n 을 구하여라.
- 6) a, b 가 서로 다른 양수라고 한다.

a, x, b 는 등차수열을 이루며, a, y, b 는 등비수열을 이룰 때, x, y 의 대소관계는?

- ① x>y ② x≥y ③ x<y ④ x≤y ⑤ 알 수 없다
- 7) 공비가 2, 끝항이 400, 총합이 750 인 등비수열에서 첫째 항과 항수를 구하여라.

8)
$$b$$
 가 a , c 의 등비중항일 때, 다음중 $\frac{1}{\log_a x} + \frac{1}{\log_c x}$ 과 같은 것은? (단, a , b , c , x 는 1 이 아닌 양수)

- ① $\log_b x$ ② $2\log_b x$ ③ $\frac{2}{\log_b x}$ ④ $\frac{1}{\log_b x}$ ⑤ $\log_a x$

9) 연이율 6 %. 매년마다의 복리로 매년 초에 20,000 원씩 적립하면, 10년 후의 원리합계는 얼마인가? (단, 1.06¹⁰÷1.7908)

10)
$$\sum_{k=5}^{n+5} 4(k-3) = An^2 + Bn + C$$
 일 때, ABC 의 값은?

11) 수열 $2 \cdot 2 + 4 \cdot 8 + 6 \cdot 18 + 8 \cdot 32 + \cdots$ 의 제 n 항까지의 합을 구하여라.

12)
$$S_n = 7 + 77 + 777 + \cdots + 77 \cdots 7$$
 을 구하여라. ($77 \cdots 7$ 은 7 이 n 개 있는 수임)

13) 다음 수열의 제 n 항까지의 합을 구하여라.

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} \cdots$$

14) 수열 1, 3, 7, 15, 31, …… 의 일반항 a_n 을 구하여라.

15) 다음과 같은 군 수열에서 제 *n*군의 합을 구하여라. (1), (3, 5), (7, 9, 11), (13, 15, 17, 19), ……

16) 자연수 *n* 이 *n* 개씩 연속되는 수열 1, 2, 2, 3, 3, 4, 4, 4, 4, 에 대하여 제 100 항은?

17) 수열{ a_n }이 $a_1=3$, $a_{n+1}=a_n+2n+3$ $(n=1,\ 2,\ 3,\cdots)$ 으로 정의 될 때, $\sum_{k=1}^{10}a_k$ 의 값은?

18) $a_1 = 2$, $a_{n+1} = \frac{n}{n+1} a_n \, (n=1, \ 2, \ 3, \cdots)$ 으로 주어지는 수열 $\{a_n\}$ 의 일반항 a_n 을 구하여라.

19) 수열 $\{a_n\}$ 을 $a_1=1,\ 2a_{n+1}-a_n+2=0\ (n=1,\ 2,\ 3,\cdots)$ 과 같이 정의 할 때, 첫째항부터 제 n 항까지의 합 S_n 을 구하시오.

20) 수열 a_1 , a_2 , a_3 , …… 가 $a_2=3$ a_1 , $a_{n+2}-3a_{n+1}+2a_n=0$ $(n=1, 2, 3, \cdots)$ 을 만족시킬 때, $a_8=85$ 이면 a_4 의 값은?

21) 수열{ a_n }을 $a_1=1$, $a_{n+1}=\frac{a_n}{1-3a_n}$ $(n=1,\ 2,\ 3,\cdots)$ 으로 정의 할 때, a_{20} 을 구하여라.

22) 다음 등차수열의 합을 구하여라.

$$20 + 20 \frac{1}{5} + 20 \frac{2}{5} + 20 \frac{3}{5} + \dots + 40$$

- 23) 첫째 항이 m, 공차가 1 인 등차수열의 첫째 항부터 제n 항까지의 합이 50 일 때, m+n 값은? (*m*은 *m*≤10 인 자연수)

 - ① 13 ② 14 ③ 15 ④ 16 ⑤ 17

- **24**) 수열 1, -2, 3, -4, 5, \cdots , $(-1)^{n+1}n$, \cdots 에서 첫째 항부터 제 n 항까지의 합을 S_n 이라 할 때, S₁₀₀ + S₂₉ 의 값은?
 - ① -35 ② -65 ③ 35 ④ 65 ⑤ 129

- **25**) 각 자연수 n 에 대하여 x 에 관한 이차방정식 $x^2+2nx+1=0$ 의 두 근을 $\alpha_{n,}$ β_{n} 으로 놓을 때,

$$\sum_{n=1}^{5} (\alpha_n^2 + \beta_n^2)$$
의 값을 구하면?

- ① 170 ② 180 ③ 190 ④ 200 ⑤ 210

26) $\sum_{n=1}^{101} ni^n$ 을 계산하면? (단, $i^2 = -1$)

27) $S=1+2\frac{1}{2}+3(\frac{1}{2})^2+\cdots+30(\frac{1}{2})^{29}$ 일 때, S 의 값은?

28) $a_1=1$, $na_{n+1}-(n+1)a_n=1$ $(n\geq 1)$ 을 만족하는 수열 $\{a_n\}$ 에 대하여, $\sum_{k=1}^{10}a_k$ 의 값은?

- ② 70 ③ 80
- **4** 90

29) $\sum_{m=1}^{n}$ { $\sum_{l=1}^{m}$ ($\sum_{k=1}^{l}$ 6) }을 n 을 사용하여 나타내시오.

30) 두 수열 { x_n }, { y_n } 이 $x_1 = 1$, $y_1 = 2$ 이고, $\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array} \right) = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right) \left(\begin{array}{c} x_n \\ y_n \end{array} \right)$ $(n=1,\ 2,\ 3,\cdots)$ 을 만족 시킬 때, $\sum_{k=1}^{20} (x_k + y_k)$ 의 값을 구하여라.

수열 문제 풀이

1) 첫째 항 $\frac{1}{6}$, 제 4 항 $\frac{2}{3}$ 인 등차수열의 공차를 d 라 하면,

$$\frac{1}{6} + 3d = \frac{2}{3}$$
 \therefore $d = \frac{1}{6}$ \therefore $a_n = \frac{1}{6} + (n-1) \cdot \frac{1}{6} = \frac{n}{6}$

$$\therefore$$
 제 n 항은 $\frac{6}{n}$

- 2) 첫째 항을 a , 공차를 d 라 하면, $a_5 + a_{15} = (a+4d) + (a+14d) = 10$ ∴ a+9d=5 $a_3 + a_7 + a_{10} + a_{13} + a_{17} = (a+2d) + (a+6d) + (a+9d) + (a+12d) + (a+16d) = 5(a+9d) = 5 \times 5 = 25$
- 3) ② 공차를 d 라 하고, x = a + d, b = a + 2d, 2x = a + 3dx = 2x - x = (a + 3d) - (a + d) = 2d $\therefore d = \frac{1}{2}x$ $\therefore a = x - d = x - \frac{1}{2}x = \frac{1}{2}x$

$$b = a + 2 \cdot \frac{1}{2} x = a + x = \frac{1}{2} x + x = \frac{3}{2} x$$
 $\therefore \frac{a}{b} = \frac{\frac{1}{2} x}{\frac{3}{2} x} = \frac{1}{3}$

- **4)** $S_{10} = \frac{10(2a+9d)}{2} = 145$, 2a+9d=29 ···① $S_{20} S_{10} = \frac{20(2a+19d)}{2} 145 = 445$, 2a+19d=59 ···② ② -①, a=1, d=3 $\therefore S_{30} S_{20} = \frac{30(2+29\times3)}{2} 590 = 1335 590 = 745$
- 5) $\log_{10}(S_n+1) = n$, $S_n+1 = 10^n$, $S_n = 10^n 1$ $a_n = S_n - S_{n-1} = 10^n - 10^{n-1} = (10^n - 1) - (10^{n-1} - 1) = 9 \cdot 10^{n-1} (n \ge 2)$ $S_1 = a_1 = 10 - 1 = 9$ $a_1 = 9 \cdot 10^{1-1} = 9$ $\therefore a_n = 9 \cdot 10^{n-1} (n \ge 1)$
- 6) ① $a\ ,\ x\ ,\ b\ \text{가 등차수열을 이루므로}\ \ x=\frac{a+b}{2} \qquad \qquad a\ ,\ y\ ,\ b\ \text{가 등비수열을 이루므로}\ \ y^2=ab$ $a>0\ ,\quad b>0\ \text{이므로}\qquad \frac{a+b}{2}>\sqrt{ab}\qquad a\neq b\quad \text{이므로}\qquad \therefore\ x>y$
- 7) 첫째 항을 a 라 하면, $a_n = a \cdot 2^{n-1} = 400$ ···① $\frac{a \cdot (2^n 1)}{2 1} = a \cdot 2^n a = 750$ ···②
 ① 에서 $a \cdot 2^n = 800$ 을 ② 에 대입하면 a = 50 50· 2 $^{n-1} = 400$ 에서 $2^{n-1} = 8$ ∴ n = 4 ∴ 첫째항 50. 항수 4.
- 8) ③ $b \text{ 가 } a, c \text{ 의 등비중함으므로} \qquad b^2 = ac$ $\therefore \frac{1}{\log_a x} + \frac{1}{\log_a x} = \log_x a + \log_x c = \log_x ac = \log_x b^2 = 2\log_x b = \frac{2}{\log_b x}$

9)
$$S = 20000 (1+0.06) + 20000 (1+0.06)^2 + \cdots + 20000 (1+0.06)^{10}$$

$$= \frac{20000 (1+0.06) \{ (1+0.06)^{10} - 1 \}}{(1+0.06) - 1} \doteq \frac{20000 \times 1.06 \times 0.7908}{0.06} = 279,416 (원)$$

10)
$$\sum_{k=5}^{n+5} 4(k-3) = 4 \left\{ \sum_{k=1}^{n+5} (k-3) - \sum_{k=1}^{4} (k-3) \right\} = 4 \left\{ \frac{(n+5)(n+6)}{2} - 3(n+5) + 2 \right\}$$
$$= 2(n+5)(n+6) - 12(n+5) + 8 = 2n^2 + 22n + 60 - 12n - 60 + 8 = 2n^2 + 10n + 8$$
$$\therefore ABC = 2 \times 10 \times 8 = 160$$

11) 준식의 일반항은,
$$2k \cdot 2k^2 = 4k^3$$

: 준식 =
$$\sum_{k=1}^{n} 4k^3 = 4\left\{\frac{n(n+1)}{2}\right\}^2 = n^2(n+1)^2$$

12)
$$S_n = \frac{7}{9} \cdot 9 + \frac{7}{9} \cdot 99 + \frac{7}{9} \cdot 999 + \dots + \frac{7}{9} \cdot (999 \dots 999) = \frac{7}{9} (9 + 99 + 999 + \dots + 999 \dots 999)$$

= $\frac{7}{9} \{ (10 - 1) + (10^2 - 1) + (10^3 - 1) + \dots + (10^n - 1) \} = \frac{7}{9} (10 + 10^2 + 10^3 + \dots - n)$
= $\frac{7}{9} \{ \frac{10(10^n - 1)}{10 - 1} - n \} = \frac{7(10^{n+1} - 9n - 10)}{81}$

13)
$$a_n = \frac{1}{\sqrt{n+\sqrt{n+1}}} = \sqrt{n+1} - \sqrt{n}$$

$$\therefore S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (\sqrt{k+1} - \sqrt{k}) = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + (\sqrt{n+1} - \sqrt{n})$$

 $= \sqrt{n+1}-1$

계차수열 {
$$b_n$$
} : 2, 4, 8, 16, \cdots $b_n = 2^n$

$$\therefore a_n = a_1 + \sum_{k=1}^{n-1} b_k = 1 + \sum_{k=1}^{n-1} 2^k = 1 + \frac{2(2^{n-1} - 1)}{2 - 1} = 2^n - 1$$

15) 제
$$n$$
 군의 첫째 항은 각 군의 첫째 항들의 계차수열을 이용하여 구한다.

$$\{a_n\}$$
: 1 3 7 13 ...

{
$$b_n$$
 } : 2 4 6 \cdots $b_n = 2n$,

$$a_n = 1 + \sum_{k=1}^{n-1} 2k = 1 + 2 \cdot \frac{(n-1)n}{2} = n^2 - n + 1$$

제 n 군의 첫째 항을 n^2-n+1 , 공차 2, 항수 n 인 등차수열이므로,

제
$$n$$
 군의 합을 S_n 이라고 하면, $S_n = \frac{n\{2(n^2-n+1)+(n-1)\cdot 2\}}{2} = n^3$

16) 100 항이 제 n 군에 속한다고 하면 제 n 군의 마지막 번호는 $1+2+3+\cdots + n=\frac{n(n+1)}{2}$

$$\therefore \frac{n(n-1)}{2} < 100 \le \frac{n(n+1)}{2} \qquad n(n-1) < 200 \le n(n+1)$$

∴
$$n=14$$
 ∴ 제 100 항은 14

17) $a_n = a_1 + \sum_{k=1}^{n-1} f(k) = 3 + \sum_{k=1}^{n-1} (2k+3) = 3 + 2 \cdot \frac{n(n-1)}{2} + 3(n-1) = n^2 + 2n$ $\sum_{k=1}^{10} a_k = \sum_{k=1}^{10} (k^2 + 2k) = \frac{10 \cdot 11 \cdot 21}{6} + 2 \cdot \frac{10 \cdot 11}{2} = 495$

18)
$$a_n = a_1 \cdot f(1) \cdot f(2) \cdots f(n-1)$$
 OHA, $a_n = 2 \times \frac{1}{2} \times \frac{2}{3} \times \cdots \times \frac{n-1}{n} = \frac{2}{n}$

$$a_{n+1} - \alpha = \frac{1}{2}(a_n - \alpha)$$
 \therefore $\alpha = -2$ $a_{n+1} + 2 = \frac{1}{2}(a_n + 2)$ 이므로 새로운 수열 $\{b_n\}$ 에 대하

여

$$b_n = 3 \cdot \left(\frac{1}{2}\right)^{n-1}$$
 Hence $a_n = 3 \cdot \left(\frac{1}{2}\right)^{n-1} - 2$

$$\therefore S_n = \sum_{k=1}^n a_n = \sum_{k=1}^n 3 \cdot \left(\frac{1}{2}\right)^{n-1} - 2 = 6 - 6 \cdot \left(\frac{1}{2}\right)^n - 2n$$

20) $a_{n+2} - 3 a_{n+1} + 2 a_n = 0$ on A, $a_n = a_1 + (3a_1 - a_1) \frac{2^{n-1} - 1}{2 - 1} = a_1 + 2a_1(2^{n-1} - 1)$

$$a_8 = 85$$
 이므로 $a_1 + 2a_1(2^{7-1}) = 85$, $255a_1 = 85$ $\therefore a_1 = \frac{85}{255} = \frac{1}{3}$

$$\therefore a_4 = \frac{1}{3} + 2 \cdot \frac{1}{3} (2^3 - 1) = 5$$

21) 양변에 역수를 취하면, $\frac{1}{a_{n+1}} = \frac{1}{a_n} - 3$, $\frac{1}{a_n} = b_n$ 이라 하면, $b_1 = 1$, $b_{n+1} = b_n - 3$

$$\therefore b_n = 1 + (n-1) \cdot (-3) = 3n + 4 \qquad \qquad \therefore a_n = \frac{1}{-3n + 4} \qquad \qquad \therefore a_{20} = \frac{1}{-3 \times 20 + 4} = \frac{1}{56}$$

22) 3030

23) ①

$$S_n = 50 \text{ or } \frac{n\{2m + (n-1) \cdot 1\}}{2} = 50$$
 $\therefore n(2m + n - 1) = 100$

그러면, n, m ($m \le 10$) 은 자연수에서 조건에 적합한 n, m 을 구하면 n = 5 일 때 m = 8

$$\therefore m+n=8+5=13$$

$$S_{100} = (1-2) + (3-4) + \dots + (99-100) = (-1) + (-1) + (-1) + \dots + (-1) = (-1) \times 50 = -50$$

$$S_{29} = (1-2) + (3-4) + \dots + (27-28) + 29 = (-14) + 29 = 15$$

$$\therefore S_{100} + S_{29} = (-50) + 15 = -35$$

25) ⑤ $x^2 + 2nx + 1 = 0 \ \mbox{의 두 근을 } \ \alpha_n, \ \beta_n \ \mbox{이라 하면} \ \ \alpha_n + \beta_n = -2n \ , \qquad \alpha_n\beta_n = 1$ $\alpha_n^2 + \beta_n^2 = (\alpha_n + \beta_n)^2 - 2\alpha_n\beta_n \ = (-2n)^2 - 2 \cdot 1 = 4n^2 - 2$ $\sum_{n=1}^{5} (\alpha_n^2 + \beta_n^2) = \sum_{n=1}^{5} (4n^2 - 2) = 4 \cdot \frac{5 \cdot 6 \cdot 11}{5} - 10 = 220 - 10 = 210$

26)
$$\sum_{n=1}^{101} ni^n = 1 \cdot i + 2 \cdot i^2 + 3 \cdot i^3 + \dots + 101 \cdot i^{101} = (-2i+2) + (-2i+2) + \dots + (-2i+2) + 101i$$
$$= (-2i+2) \times 25 + 101i = 50 + 51i$$

27) $S = 1 + 2 \cdot \frac{1}{2} + 3(\frac{1}{2})^{2} + \dots + 30(\frac{1}{2})^{29} \dots \text{1}$ $\frac{1}{2}S = \frac{1}{2} + 2(\frac{1}{2})^{2} + 3(\frac{1}{2})^{3} + \dots + 30(\frac{1}{2})^{30} \dots \text{2}$ $1 - 2, \frac{1}{2}S = 1 + \frac{1}{2} + (\frac{1}{2})^{2} + \dots + (\frac{1}{2})^{29} - 30(\frac{1}{2})^{30} = \frac{1 - (\frac{1}{2})^{30}}{1 - \frac{1}{2}} - 30(\frac{1}{2})^{30} = 2 - 32(\frac{1}{2})^{30}$ $\therefore S = 4 - 64(\frac{1}{2})^{30} = 4 - (\frac{1}{2})^{24}$

28) ⑤ 준식의 양변을
$$n(n+1)$$
 로 나누면 , $\frac{a_{n+1}}{n+1} - \frac{a_n}{n} = \frac{1}{n(n+1)}$
$$\frac{a_n}{n} = b_n \text{ 으로 놓으면 }, \quad b_1 = \frac{a_1}{1} = 1, \quad b_{n+1} - b_n = \frac{1}{n(n+1)}$$

$$\therefore b_n = b_1 + \sum_{k=1}^{n-1} \frac{1}{k(k+1)} = 1 + \sum_{k=1}^{n-1} (\frac{1}{k} - \frac{1}{k-1}) \qquad \therefore 1 + (1 - \frac{1}{n}) = \frac{2n-1}{n} \qquad \therefore \frac{a_n}{n} = \frac{2n-1}{n}$$
 따라서 $a_n = 2n-1$
$$\therefore \sum_{k=1}^{10} (2k-1) = 2 \cdot \frac{10 \cdot 11}{2} - 10 = 100$$

29)
$$\sum_{m=1}^{n} \left\{ \sum_{l=1}^{m} \left(\sum_{k=1}^{l} 6 \right) \right\} = \sum_{m=1}^{n} \left\{ \sum_{l=1}^{m} 6 l \right\} = \sum_{m=1}^{n} 6 \cdot \frac{m(m+1)}{2} = 3 \sum_{m=1}^{n} (m^{2} + n)$$
$$= 3 \left\{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right\} = n(n+1)(n+2)$$

30)
$$x_{n+1} = 2x_n + y_n$$
 ···① $y_{n+1} = x_n + 2y_n$ ···② ① $+$ ②, $x_{n+1} + y_{n+1} = 3(x_n + y_n)$ $\therefore \{x_n + y_n\}$ 은 첫째항 $x_1 + y_1$ 이고 공비가 3인 등비수열이다.
$$\therefore x_n + y_n = (x_1 + y_1) \cdot 3^{n-1} = 3 \cdot 3^{n-1} = 3^n \quad \therefore \sum_{k=1}^{20} (x_k + y_k) = \sum_{k=1}^{20} 3^k = \frac{3(3^{20} - 1)}{3 - 1} = \frac{3}{2}(3^{20} - 1)$$